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Abstract 

The subject of the paper is related to problems with numerical errors in the finite 
difference method used to solve equations of the theory of elasticity describing 2-
dimensional adhesive joints in the plane stress state. Adhesive joints are described in 
terms of displacements by four elliptic partial differential equations of the second order 
with static and kinematic boundary conditions. If adhesive joint is constrained as a 
statically determinate body and is loaded by a self-equilibrated loading, the finite 
difference solution is sensitive to kinematic boundary conditions. Displacements 
computed at the constraints are not exactly zero. Thus, the solution features a numerical 
error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called 
numerical non-equilibrium. The disturbances in displacements and stress distributions 
can be decreased or eliminated by a correction of loading acting on the adhesive joint or 
by smoothing of solutions based on Dirichlet boundary value problem.  

Keywords: adhesive joint, equations of linear theory of elasticity, finite difference 
method, numerical error, smoothing of solutions, Dirichlet boundary value 
problem 

1. MODEL OF 2-DIMENSIONAL ADHESIVE JOINT 

An adhesive joint is considered as an assembly of two plane adherends 
connected along a common surface by an adhesive. It is assumed that the 
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adherends are thin and have constant or moderately varying thickness. The 
adhesive is thin and may be of constant or moderately varying thickness, too. 
The adherend is considered thin when the ratio between its thickness and the 
dimension along the loading line of action does not exceed 0.1. A moderate 
variation of thickness is observed when the absolute value of the first derivative 
of thickness function does not exceed 0.2. Thickness of a plane element is 
measured perpendicularly to the plane 0XY. The joint thickness is measured in 
the direction normal to its mid-surface. 
The joint is modelled as a plane 2-dimensional element parallel to the plane 
0XY in a Cartesian set of co-ordinates. Projections of the adherends and the 
adhesive in the plane 0XY form the same figure of an arbitrary shape. Loading 
acting on the adhesive joint can be in the form of the forces parallel to the plane 
0XY distributed on the surfaces and edges of adherends (Fig. 1). 
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Fig. 1. Layout of an adhesive joint. 1 - adherend 1, 2 - adherend 2,  3 - adhesive 

It is assumed that the flexural and torsional effects at plane adherends are of 
secondary order and can be neglected. Thus, the distribution of stresses across 
the adherend thickness is assumed to be constant and the stresses in adherends 
form plane states parallel to the plane 0XY. 
An assumed layout of an adhesive joint is presented in Fig. 1. Thickness of 
adherends is described by functions g1 = g1(x, y) and g2 = g2(x, y), which are 
C1-continuous in the sense of partial derivatives with respect to the variables x, 
y. The functions g1 and g2 can have zero values at some regions or in the 
vicinity of certain points on adherend edges. 
The mid-plane of the adhesive is described by a function s = s(x, y), which is 
C1-continuous in the sense of partial derivatives with respect to the variables x, 
y. The thickness t = t(x, y) of the adhesive is larger than zero in the entire 
domain and is C1-continuous in the sense of partial derivatives with respect to 
the variables x, y. 
The adhesive is modelled as an isotropic linearly-elastic medium with the 
material constants: Young’s modulus Es , shear modulus Gs and Poisson’s ratio 
νs , where Es = 2(1 + νs)Gs. The adhesive is subjected to stresses τx = τx(x, y), 
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τy = τy(x, y) tangent to its mid-plane and the stress σN = σN(x, y) normal to it. It is 
assumed that the stresses are constant across the adhesive thickness. The action 
of the shear stresses τx and τy in the adhesive leads to a shear strain, which 
results in relative displacements of adhesive layers in directions tangent to the 
adhesive mid-plane. The stress σN results in an axial strain normal to the 
adhesive mid-plane. The assumptions regarding loading of the adhesive joint by 
forces parallel to the plane 0XY and concerning plane stress states in the 
adherends parallel to the plane 0XY, lead to the conclusion that the resultant 
from the stresses τx , τy  and σN is also parallel to the plane 0XY. 
Displacements in the adherends 1 and 2 are described by the functions 
u1 = u1(x, y) and u2 = u2(x, y) for the direction X and the functions υ1 = υ1(x, y) 
and υ2 = υ2(x, y) for the direction Y. The functions u1 , u2 , υ1 , υ2 are C2-
continuous in the sense of partial derivatives with respect to the variables x, y. 
Loading distributed at external surfaces of the adherends 1 and 2 are given in 
terms of components parallel to the axes X and Y and are described as 
q1x = q1x(x, y), q2x = q2x(x, y) and q1y = q1y(x, y), q2y = q2y(x, y). Orientations of the 
axes X and Y determine a positive sign of the loading functions. 
The adherends 1 and 2 are bounded by circumferential edge surfaces (edges) 
perpendicular to the plane. The width of the edge surfaces is equal to the 
adherend thickness. If the width of the edge surface is larger than zero, than the 
edge is called unsharp. Stresses acting on unsharp edges of an adherend k are 
denoted by pkx and pky (k = 1, 2). It is assumed that the stresses pkx and pky are 
parallel to the axes X and Y, respectively, and are constant across the adherend 
thickness. These stresses are treated as a given external loading acting on the 
adherends in the plane parallel to 0XY. The width of the edge surface at a 
particular adherend or its fragment can be equal to zero. In such a case the edge 
is called sharp. Edge loading is not defined at sharp edges.  
In the following, the displacement functions u1 , u2 , υ1 , υ2 for the adherends are 
considered as unknown quantities and equations of the theory of elasticity in the 
plane stress state with boundary conditions are formulated for them. Knowing 
the displacement functions u1 , u2 , υ1 , υ2 one can determine complete stress and 
strain states for adhesive and adherends. 

2. GENERAL DISPLACEMENT EQUATIONS FOR ADHESIVE 
JOINT AND BOUNDARY CONDITIONS 

It is assumed that adherends are made from orthotropic materials with principal 
axes of orthotropy coinciding with the axes X and Y of a co-ordinate system. 
An orthotropic material in the plane stress is described by five material 
constants: two moduli of longitudinal deformation Ekx , Eky , one modulus of 
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shear deformation Gkxy and two Poisson’s ratios νkxy , νkyx. It is assumed that the 
condition kykyxkxkxy EE νν =  holds. 

General equations of the theory of elasticity and boundary conditions for an 
adhesive joint in terms of displacements were derived in [18, 19, 20]. They 
read:  
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where k = 1 for the adherend 1 and k = 2 for the adherend 2. 
In the equations (1.a) – (1.d) the following notation was introduced: 
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The angles xϕ , yϕ  are given by the formulae: xsx ∂−∂= /tanϕ  and ysy ∂−∂= /tanϕ , 

where ),( yxss=  is the equation of the mid-plane of adhesive in the co-ordinate 

system 0XYZ.  
The equations (1.a) − (1.d) form a set of four partial differential equations of 
the second order in terms of displacements describing an adhesive joint between 
adherends with varying thickness made from orthotropic materials and with an 
adhesive defined by a curved surface. The unknown functions are the 
displacements 2121 ,,, υυuu  for the adherends 1 and 2. It can be shown [18], 

that the characteristic form of the main part of the equations set (1.a) − (1.d) is 
positively definite. Hence the set (1.a) − (1.d) is elliptic. Thus, existence and 
uniqueness of solution to the set (1.a) – (1.d) with appropriate boundary 
conditions are ensured [5, 7, 9, 10, 13, 15, 22]. 
Static boundary conditions for adherends displacements at unsharp edges take 
the form:  
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where l and m denote directional cosines of a vector normal to adherend edges. 
Boundary conditions at sharp edges read: 
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The boundary conditions (7.a) – (7.d) for sharp edges are identical with the 
equations (1.a) – (1.d), with 021 == gg  substituted. 
Boundary conditions at both unsharp and sharp edges represent equilibrium 
conditions, however the character of equilibrium is different in these two cases. 
The boundary conditions at an unsharp edge express equilibrium of internal 
stresses in an adherend and external stresses representing adherend loading. 
Thus, the equations (1.a) – (1.d) at an unsharp edge preserve their form and an 
unsharp edge belongs to the definition set for these equations. The equations 
(1.a) – (1.d) for a sharp edge degenerate to the form (7.a) – (7.d) and, in order to 
avoid a singularity, a sharp edge has to be excluded from the definition set of 
the equations (1.a) – (1.d). The values of displacements and their derivatives 
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present in the conditions (7.a) – (7.d) have to be considered as unilateral 
internal limits.  
In the theory of differential equations the boundary conditions representing 
equilibrium conditions in terms of derivatives of the unknown functions are 
called natural boundary conditions. In mechanics the term static boundary 
conditions is used.  
In the displacement formulation static boundary conditions are not sufficient to 
obtain a unique solution for the equations (1.a) – (1.d). Indeed, if the functions 
uk(x, y) and υk(x, y) are solutions to the equations (1.a) – (1.d), then for arbitrary 
constants u0 , υ0 , θ the functions  

,),( 0uyyxuk +⋅−θ    0),( υθυ +⋅+ xyxk  

(k = 1, 2) are solutions, too. It can be verified by a simple substitution. The 
constants u0 and υ0 are interpreted as arbitrary translations of the adhesive joint 
in the directions of the axes X and Y, while θ is interpreted as a small rotation 
of the adhesive joint about the origin 0 of the co-ordinate set 0XY.  
Thus, it can be concluded that the adhesive joint has three degrees of freedom in 
the class of solutions to the equations (1.a) – (1.d): two as a mechanism with 
respect to two arbitrary translations along the axes X and Y and one as a 
mechanism with respect to a small rotation about the origin 0 of the co-ordinate 
set 0XY.  
In order to ensure uniqueness of a solution to the equations (1.a) – (1.d) one has 
to constrain the displacements with respect to these three degrees of freedom, 
and to obtain a geometrically stable system. For instance: 

uk(0,0) = 0,  υk(0,0) = 0,   υk(xq,0) = 0, where xq ≠ 0 (8)

or 

uk(0,0) = 0,  υk(0,0) = 0,   uk(0,yq) = 0, where yq ≠ 0, (9)

with k = 1 or k = 2. Such a constraint set or any equivalent one is statically 
determinate and support reactions at the constraints can be uniquely determined. 
If an adhesive joint is loaded by a self-equilibrated set of forces and it is 
constrained in a statically determinate way, then support reactions at the 
constraints are zero. Stress and strain states in this case do not depend on the 
way of constraining. In the case of an adhesive joint loaded by a given self-
equilibrated loading and constrained in a statically determinate way, 
displacements for various constraining layout differ by a translation and 
rotation as in the case of a rigid body. 
The constraint points leading to a geometric stability of the system have to be 
considered as boundary points. An adhesive joint can be constrained in a more 
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complex way, to make it statically indeterminate by imposing appropriate 
constraints on its adherends. In particular one can constrain some points or 
impose displacement for at entire edges of adherends. Such boundary 
conditions in the theory of differential equations are called as essential 
boundary conditions or Dirichlet boundary conditions. In mechanics the 
boundary conditions imposed on displacements are called kinematic boundary 
conditions. 

3. FORMULAE EXPRESSING STRESSES IN ADHESIVE AND 
ADHERENDS 

Having found the functions of displacements 2121 ,,, υυuu  for the adherends 1 

and 2 one can determine stresses in the adhesive and the adherends. It can be 
shown [18, 19, 20], that the adhesive stresses are given by  
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Stresses in the adherends made from an orthotropic material are expressed by: 
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where k = 1 for the adherend 1 and k = 2 for the adherend 2. 

4. STRESS EQUATIONS FOR ADHESIVE 

In the particular case, when the adherends are plane, of a constant thickness and 
made from orthotropic materials, the displacement equations (1.a) – (1.d) can be 
transformed to the form where shear stresses in the adhesive are unknowns. 
This yields [18, 19, 21]: 
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and ν1 , ν2 are Poisson’s ratios for the adherends 1 and 2.  
Static boundary conditions for the shear stresses τx and τy take the form 
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The static boundary conditions (17.a) and (17.b) suffice to ensure uniqueness of 
solutions to the equations (13.a) and (13.b). It is assumed, that an adhesive joint 
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is loaded by a self-equilibrated set of external forces, so the shear stresses τx and 
τy in the adhesive do not depend on the position of the joint in the space 0XYZ. 
Thus, for the stress equations kinematic boundary conditions are not 
formulated. This fact and the stress equations (13.a), (13.b) will be used to 
verify the solution smoothing method applied to solutions of the displacement 
equations (1.a) – (1.d) by means of the Dirichlet boundary value problem. 

5. NUMERICAL SOLUTION BY THE FINITE DIFFERENCE 
METHOD 

Boundary value problems in displacements and in stresses are solved here, 
using the classical finite difference method [1, 3, 4, 6, 8, 12, 23]. The method is 
based on a replacement of differential operators with difference operators 
defined in a discrete set of points (nodes), which are intersections of lines 
forming a difference mesh in a rectangle 2lx × 2ly (Fig. 2).  
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Fig. 2. Finite difference mesh on a projection of adhesive surface  

The difference mesh has a regular rectangular shape with side lengths ∆x and 
∆y. There are m nodes in the direction X ( j = 1, 2, ..., m), and n nodes in the 
direction Y (i = 1, 2, ..., n), with n, m ≥ 5. It is assumed that n and m are odd 
numbers. The unknowns in the finite difference method are the values of 
displacements functions ukr,s = uk(xr  , ys) and υkr,s = υk(xr  , ys) for k = 1, 2 or the 
values of the shear stresses functions τxr,s = τx(xr  , ys) and τyr,s = τy(xr  , ys) in the 
adhesive defined in the nodes of the finite difference mesh. Derivatives of 
functions are approximated with central differences. 
Displacement equations are formulated for all the nodes of the finite difference 
mesh, excluding those, where kinematic boundary conditions are defined and 
those at sharp edges. In the case of nodes with prescribed kinematic boundary 
conditions, if they are constrained, zero displacements are substituted. For 
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nodes on sharp edges static boundary conditions are applied. Application of the 
central differences to nodes at edges, with the exception of sharp ones, results 
in fictitious values of unknown functions for nodes falling out of the rectangular 
domain 2lx × 2ly. Those fictitious values of the unknown functions are 
eliminated by means of static boundary conditions for unsharp edges. In the 
case of sharp edges the fictitious nodes beyond the rectangular domain 2lx × 2ly 
are not introduced. For internal nodes at sharp edges central differences are 
used for the direction along the edge, while for the direction across edges and 
for corner nodes unilateral differences spanning three nodes in the direction X 
and Y are used. A complete set of linear equations of the finite difference 
method in terms of displacements consists of 4nm equations. The matrix formed 
from coefficients of equations is not symmetric and is singular because the 
adhesive joint itself is a mechanism. Non-singularity of the matrix and 
uniqueness of the solution for a system expressed in terms of displacements is 
obtained, if kinematic boundary conditions for displacements uk and υk are 
imposed to make the adhesive joint geometrically stable. To this end one has to 
constrain at least three degrees of freedom at arbitrary points of the finite 
difference mesh at one of the adherends. The constrains can be one- or two-
directional. The points and directions subjected to the constraints do not belong 
to the definition set of the equations but to the boundary points set. Finite 
difference equations are not formulated for the constrained directions at the 
boundary points. The described process of imposing of kinematic conditions 
can be illustrated by an example of a difference mesh n = m = 5 presented in 
Fig. 3. In the analyzed case it is assumed that the point 7 in the adherend 2 has 
imposed constraints in both directions and the point 14 in the direction Y. 
Points of the adherend 1 are not constrained. 
The kinematic boundary conditions presented in Fig. 3 can be given analytically 
as: 

0)14(,0)7(,0)7( 222 === υυu . 

The stress equations are formulated for all the nodes of the finite difference 
mesh. In the equations related to the nodes located at boundaries of the 
rectangle, fictitious values of unknowns at the points lying beyond the 
rectangular domain 2lx × 2ly are present. They are eliminated from the set of 
equations by means of static boundary conditions. 
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Fig. 3. Example of kinematic boundary conditions  

for the finite difference mesh n = m = 5 

Adherends displacements and stresses as well as shear stresses in adhesive 
depend on loading and constraining of the adherends. A particular case is 
represented by an adhesive joint, where one adherend is constrained as 
statically determinate and the joint is loaded by a self-equilibrated set of forces. 
Then support reactions at the constraints are zero, independently of the way of 
constraining. Thus, in such cases adherends displacements depend only on 
loading and layout of constraints, while stresses in adherends and adhesive – on 
loading only. 
Numerical solutions to displacements and stress based boundary value problems 
discussed above were obtained using a system of computer programs SPOINA 
(ADHESIVE). For elliptic equations of the theory of elasticity the finite 
difference method is convergent [2, 16]. Test computations indicate, that the 
finite difference meshes from the range 41 ≤  m, n  ≤ 51 yield a relative error of 
solution not exceeding 0.5%. 

6. NUMERICAL NON-EQUILIBRIUM 

In the case of displacement formulation solutions are sensitive to kinematic 
boundary conditions. It can be observed for adhesive joints with one adherend 
constrained to be statically determinate (like in Fig. 3) and a self-equilibrated 
loading set. In this case support reactions should be zero. However, the 
solutions to the displacement based finite difference equations usually do not 
fulfil this condition. The solutions feature numerical errors and the joint 
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behaves as if it was not in equilibrium. Here this phenomenon is called 
numerical non-equilibrium.  
The numerical non-equilibrium is manifested in disturbances of solutions in the 
form of small global asymmetry and local concentrations at constrained points 
of the finite difference mesh.  
The numerical error consists of a method error and round-up errors. The method 
error is due to the discretisation of the adhesive joint domain by the finite 
difference mesh and replacement of derivatives in the equations with finite 
differences.  
The round-up errors occur during arithmetic computation and their magnitude 
depends on the type of operation and machine precision, i.e. the number of bits 
used to store the real number in computer memory (32 bits in single precision, 
64 bits in double precision and 80 in extended precision). In the examples 
presented in this paper the method error does not influence the form and 
magnitude of the numerical non-equilibrium. The precision of computations 
plays a vital role here.  
In order to illustrate the phenomenon of the numerical non-equilibrium an 
adhesive joint loaded axially is analyzed. The joint consists of two steel 
adherends with the following dimensions: length 10.0 cm (lx = 5.0 cm), width 
8.0 cm (ly = 4.0 cm). The adherend thickness is g1 = g2 = 0.4 cm, and the 
adhesive thickness is t = 0.04 cm. The adopted modulus of deformability for 
adhesive is Gs = 450000 N/cm2 and the difference mesh n × m = 41 × 51 (∆x = 
∆y = 0.2 cm). The edges x = lx of the adherend 1 and x = – lx of the adherend 2 
are subjected to a uniformly distributed normal loading ± σ = 2.5 N/cm2. The 
loading resultants acting at the adherend edges are N1p = −N2L = 8.0 N. 
Kinematic boundary conditions are imposed on the adherend 2 to constrain the 
point (21, 26) in the directions X , Y and the point (21, 36) in the direction Y, 
see Fig. 4. 
A complete solution to the problem in the displacement formulation is given as 
functions of adherends displacements uk , υk , functions of stresses in adherends 
σkx , σky , τkxy , (k = 1, 2) and functions of shear stresses in adhesive τx and τy. 
First, solutions obtained using single precision are analyzed. Figures 6a, b − 
7.13a, b present distributions of functions uk , υk , σkx , σky , τkxy , τx and τy with an 
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Fig. 4. Loading and constraining of adherends in an adhesive joint  

indication of boundary disturbances to displacements and stresses due to 
constraining of the adherend 2. These disturbances can be decreased or 
eliminated by a correction of loading acting on the joint. There are many ways 
to correct the loading but any correction will violate the equilibrium of the 
original loading system. It was found by a trial-and-error approach, that the 
disturbances in stresses and displacements distributions can be decreased by a 
correction of the loading acting on the adherend l with the forces N1g = N1d = 

− 0.0015 N, N1L = N1p = − 0.001725 N and  T1p = − 0.000091 N. These forces in 
the form of uniformly distributed stresses along edges of the adherend 1 are 
presented in Fig. 5. Effects of this decrease of disturbances in the distributions 
of displacements and stresses are shown in Figs. 6c − 11c.  
 

                            

 

 
 

 
 

X 

    Element 1 

Y − 0.00046875 N/cm2 

− 0.00046875 N/cm2 

− 0.000539062 N/cm2 − 0.000539062 N/cm2 

 − 0.000042656 N/cm2 

Fig. 5. Correction of loading acting on adherend 1 
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 Displacement u2 in adherend 2                                              Displacement u1 in adherend 1 
 

 a) Distributions of displacements functions u1 and u2 
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 Displacement u2 in adherend 2                                            Displacement u1 in adherend 1 
 

 b) Disturbances in distributions of displacements u1 and u2 along Y. 500-times magnification  
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Displacement u2 in adherend 2                                             Displacement u1 in adherend 1 
 

c) Decrease of disturbances in distributions of displacements u1 and u2 due to correction of 
adherend 1 loading presented in Fig. 5. 500-times magnification 
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Fig. 6. Illustration of numerical non-equilibrium for displacements u1 and u2 in steel-steel 
adhesive joint loaded axially and constrained according to Fig. 4. Single precision 

computations  
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Displacement υ2 in adherend 2                                             Displacement υ1 in adherend 1 
 

b) Disturbances in distributions of displacements υ1 and υ2 along Y. 500-times magnification  
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Displacement υ2 in adherend 2                                             Displacement υ1 in adherend 1 
 

b) Disturbances in distributions of displacements υ1 and υ2 along Y. 500-times magnification  
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Displacement υ2 in adherend 2                                             Displacement υ1 in adherend 1 
 

c) Decrease of disturbances in distributions of displacements υ1 and υ2 due to correction of 
adherend 1 loading presented in Fig. 5. 500-times magnification  
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Fig. 7. Illustration of numerical non-equilibrium for displacements υ1 and υ 2 in steel-steel 

adhesive joint loaded axially and constrained according to Fig. 4. Single precision 
computations  

The values of displacements u1 and u2 at the axis X in Fig.6a are: 
 

u1(–lx,0) = –2.6874·10–7
 cm, u1(0,0) = 3.0407·10–10

 cm, u1(lx,0) = 3.3931·10–7
 cm, 

 

u2(–lx,0) = –3.3846·10–7
 cm, u2(0,0) = 0.0 cm, u2(lx,0) = 2.6948·10–7

 cm. 
 

The values of displacements v1 and v2 at the axis Y in Fig.7a are: 
 

,cm107824,6),0(,cm107424,1)0,0(,cm108327,6),0( 10
1

10
1

8
1

−−− ⋅−=⋅=⋅=− yy ll υυυ  

cm107808,6),0(,cm0,0)0,0(,cm108312,6),0( 10
22

8
2

−− ⋅−==⋅=− yy ll υυυ . 
 

Figure 6b presents a constraint at the point (i, j) = (21, 26) of the adherend 2 in 
the direction X, and Fig. 7b – a constraint of the adherend 2 at the points (i, j) = 
(21, 26) and (i, j) = (21, 36) in the direction Y, according to the kinematic 
boundary conditions imposed on the adherend 2 (Fig. 4). Local concentrations 
of displacements distributions were formed at the constrained points. Figures 
depict certain asymmetry of displacements along axes X an Y, too. 
By means of an appropriate correction the concentration and asymmetry can be 
decreased (Figs. 6c and 7c). 
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Normal stress σ2x in adherend 2                                   Normal stress σ1x in adherend 1 
                   
a) Distributions of normal stresses functions σ1x , σ2x in adherends 
 

          
 
 
 

Normal stress σ2x in adherend 2                                              Normal stress σ1x in adherend 1 
 

b) Disturbances in distributions of normal stresses σ1x , σ2x. 100-times magnification 
 
 

     
 
 
 
 
Normal stress σ2x in adherend 2                                               Normal stress σ1x in adherend 1 

 

c) Eliminated disturbances in distributions of normal stresses σ1x , σ2x due to correction of 
adherend 1 loading presented in Fig. 5. 100-times magnification  
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Fig. 8. Illustration of numerical non-equilibrium for stresses σ1x , σ2x in steel-steel 
adhesive joint loaded axially and constrained according to Fig. 4. Single precision 

computations  
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Normal stress σ2y in adherend 2                                        Normal stress σ1y in adherend 1 
 

a) Distributions of normal stresses functions σ1y , σ2y in adherends 
 
  

y

                          

y

             
Normal stress σ2y in adherend 2                                              Normal stress σ1y in adherend 1 
 

b) Disturbances in distributions of normal stresses σ1y , σ2y. 100-times magnification 
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Normal stress σ2y in adherend 2                                                Normal stress σ1y in adherend 1 
  
c) Eliminated disturbances in distributions of normal stresses σ1y , σ2y due to correction of 
adherend 1 loading presented in Fig. 5. 100-times magnification  
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Fig. 9. Illustration of numerical non-equilibrium for stresses σ1y , σ2y in steel-steel 
adhesive joint loaded axially and constrained according to Fig. 4. Single precision 

computations 

The stress values σ1x , σ1y  at the axis X in Fig. 8a i 9a are: 
 

2
1

2
1

2
1 N/cm5,2)0,(,N/cm25,1)0,0(,N/cm0,0)0,( ===− xxxxx ll σσσ , 

2
1

2
1

2
1 N/cm35,0)0,(,N/cm0,0)0,0(,N/cm35,0)0,( ==−=− xyyxy ll σσσ . 

 

The shear stresses τ1xy , τ2xy in the adherends are antisymmetric.  
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Shear stress τ2xy in adherend 2                                               Shear stress τ1xy in adherend 1 
 

a) Distributions of shear stresses functions τ1xy , τ2xy in adherends  
 

 
 

                                   

 

 
 
Shear stress τ2xy in adherend 2                                                     Shear stress τ1xy in adherend 1 
 

b) Disturbances in distributions of shear stresses τ1xy , τ2xy. 5-times magnification  
 
 
 

                                   

 

 
 
Shear stress τ2xy in adherend 2                                                       Shear stress τ1xy in adherend 1 

 

c) Eliminated disturbances in distributions of shear stresses τ1xy , τ2xy due to the correction of 
adherend 1 loading presented in Fig. 5. 5-times magnification  
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Fig. 10. Illustration of numerical non-equilibrium for shear stresses τ1xy , τ2xy adherends 
of steel-steel adhesive joint loaded axially and constrained according to Fig. 4. Single 

precision computations  

The extreme value of τkxy in the adherends in Fig. 10a is 2N/cm0148,0±=kxyτ . 

It can be concluded from Figs. 6b − 12b that the disturbances of displacements 
and stresses in the adherend 2, due to its constraining, are transmitted to an 
insignificant degree to the adherend 1 – they are moderated in adhesive due to 
its flexibility. However, this moderation results in local concentrations of shear 
stress in adhesive, presented in Fig. 11b. 
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Shear stress τx  in adhesive                                                 Shear stress τy  in adhesive 
 

a) Distributions of shear stresses functions in adhesive: τx(± lx , 0) = 0.785 N/cm2, 
 |τy(± lx , ± ly) | = 0.199 N/cm2 
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b) Concentrations of shear stresses in adhesive. 100-times magnification 
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Shear stress τx  in adhesive                                                    Shear stress τy  in adhesive 
 

c) Shear stresses in adhesive after elimination of concentrations due to correction of adherend 1 
loading presented in Fig. 5. 100-times magnification  
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Fig. 11. Illustration of numerical non-equilibrium for shear stresses in adhesive  
of steel-steel adhesive joint loaded axially and constrained according to Fig. 4.  

Single precision computations  

Numerical errors in the case of extended precision are much smaller than for 
single precision and computations do not require any corrections. For instance, 
the displacements u1 and u2 along the axes X and Y presented with a magnitude 
possible to represent in figures are symmetric, regular and do not exhibit any 
disturbances in the form of local concentrations at the constrained points of the 
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adherend 2 (Fig. 12a, b). The displacements υ1 and υ2 , which should be zero at 
the axis X, do not exhibit any local disturbances even for 1013

 -times 
magnification and in the scale used in figures can be considered as null (Fig. 
12c). 

 

                        
a) Displacement u2 in adherend 2 at the axis Y.       b) Displacement u1 in adherend 1 at the axis Y.
105-times magnification with respect to Fig. 6a            103-times magnification with respect to Fig. 6a 
 

 

 
c) Displacements υ1 and υ2 at the axis X. 1013-times magnification with respect to Fig. 7a  
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Fig. 12. Absence of any evident disturbances of displacements in steel-steel adhesive 

joint loaded axially and constrained according to Fig. 4. Extended precision 
computations  

 
Distributions of stresses τx and τy     do not exhibit any concentrations at the 
constrained points for the adherend 2 even at 100-times magnification (Fig. 
13a). Larger magnification does not indicate any concentrations for the stress τx, 
while some concentrations of τy become evident for 1014-times magnification. 
Also the signs of stress values τy are different at the concentrations (Fig. 13b). 
 

                     

 

 
 

Shear stress τx  in adhesive                                              Shear stress τy  in adhesive 
 
a) Distributions of shear stresses functions in adhesive along the axes X, Y. 100-times 
magnification with 
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b) Concentrations of shear stresses τy in adhesive at the constrained points in the adherend 2. 1014-
times magnification with respect to Fig. 11a   
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Fig. 13. Illustration of numerical non-equilibrium in adhesive of steel-steel adhesive joint 

loaded axially and constrained according to Fig. 4. Extended precision computations 

7. SOLUTIONS SMOOTHING 

The presented method to remove local disturbances of displacements and 
stresses based on a correction of loading acting on an adhesive joint was meant 
to illustrate the numerical non-equilibrium only. It is not appropriate for 
practical purposes because it involves numerous repetitions of the computations 
and is not unique. A more correct method to improve the situation is solution 
smoothing. 
This method is based on the observation (founded, for instance, by Figs. 6–13 
and numerical results), that an influence of local disturbances of displacements 
is limited to a small zone on the joint surface around a constrained point. Thus, 
if the constrained point were located at a sufficient distance from the adhesive 
edges, than local disturbances at that point would have a negligible influence on 
solutions at points lying at the edges of the adhesive surface. 
The proposed method of solution smoothing involves two subsequent solutions 
of different boundary value problems for one adhesive joint. In the first 
problem, solution to the equations (1.a) – (1.d) fulfilling the static boundary 
conditions (5.a) – (5.d) or (6.a) – (6.d) and kinematic boundary conditions is 
found. The static boundary conditions include loading acting on the adhesive 
joint and the kinematic boundary conditions – constraining of one of adherends 
ensuring geometric stability of the adhesive joint. 
Having solved the first problem one gets the functions of displacements of 
adherends defined at the entire adhesive surface. Thus, the functions of 
displacements at the adhesive edges are known, too. If the constrained points 
are sufficiently remote from the adhesive edges, then one can assume, that the 
functions of displacements at the adhesive edges do not exhibit errors due to 
local displacement concentrations. These functions as given continuous 
functions in the definition domain for the equations (1.a) – (1.d), can be treated 
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as boundary functions for the second boundary value problem, namely the 
Dirichlet boundary problem [11, 14, 17]. 

To formulate the Dirichlet boundary problem the notation Ω  is introduced for a 
closed rectangle coinciding with a projection of an adhesive surface on the 
plane 0XY of the main set of co-ordinates and it is defined as a Cartesian 
product of two closed sections [− lx , lx ] ⊂ R and [− ly , ly ] ⊂ R, i.e.  

 

Ω  =  [− lx , lx ] × [− ly , ly ]. 
 

The interior of Ω  is an open rectangle Ω defined as a Cartesian product of two 
open sections (− lx , lx ) ⊂  R and ( − ly , ly ) ⊂ R, i.e. 

 

Ω =  (− lx , lx ) × (− ly , ly ). 
 

The set Ω on the plane R2, as connected and open, represents a region in R2. The 

boundary Ω∂  of the region Ω is defined as a difference of sets Ω∂  = Ω \ Ω . 

The sets Ω∂  and Ω are disjoint and the equality Ω  = Ω ∪ Ω∂  holds. On the 

boundary Ω∂  of the region Ω, i.e. for ∈),( yx Ω∂ , continuous functions  

),(),,(),,(),,( 2211 yxyxuyxyxu bbbb υυ  (18)

are given. They define displacements of adherends at the adhesive surface.  

The Dirichlet problem (the internal Dirichlet boundary value problem) for the 
equations (1.a) – (1.d) requires finding the functions 2211 ,,, υυ uu , defined and 

continuous in the set Ω , having continuous second partial derivatives defined 
in the region Ω, fulfilling the equations (1.a) – (1.d) in Ω, and fulfilling the 
Dirichlet boundary conditions: 

),(),( 11 yxuyxu b=∂Ω
, (19.a)

),(),( 11 yxyx bυυ =∂Ω
, (19.b)

),(),( 22 yxuyxu b=∂Ω
, (19.c)

),(),( 22 yxyx bυυ =∂Ω  
(19.d)
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at the boundary of the region Ω, i.e. for ∈),( yx Ω∂ . The boundary conditions 

(18) have the sense of limit transformations from the interior of the region Ω 

onto its boundary Ω∂ . It means, that for an arbitrary point ∈),( bb yx Ω∂  and 

for ∈),( yx  Ω the following limits exist: 
 

),(),( 11
),(),(

lim bbb
yxyx

yxuyxu
bb

=
→

, 

),(),( 11
),(),(

lim bbb
yxyx

yxyx
bb

υυ =
→

, 

),(),( 22
),(),(

lim bbb
yxyx

yxuyxu
bb

=
→

, 

),(),( 22
),(),(

lim bbb
yxyx

yxyx
bb

υυ =
→

. 

 

Thus, we have defined uniquely the solutions to two following boundary value 
problems: 
− to the boundary problem (1.a) – (1.d), (6.a) – (6.d) or (7.a) – (7.d) in 

displacements with kinematic boundary conditions denoted by 

SSSS uu 2211 ,,, υυ , 

− to the Dirichlet boundary problem denoted by DDDD uu 2211 ,,, υυ .  

These solutions are identical. In order to prove it, it is sufficient to note, that the 
functions given by:  
 

DSDSDSDS uuuuuu 222222111111 ∆,∆,∆,∆ υυυυυυ −=−=−=−=  
 

fulfil the equations (7.a) with zero Dirichlet boundary conditions: 

0),(∆ 1 =∂Ωyxu
, 

0),(∆ 1 =∂Ωyxυ
, 

0),(∆ 2 =∂Ωyxu
, 

0),(∆ 2 =∂Ωyxυ
. (20)

Uniqueness of the solution to the Dirichlet boundary problem leads to zero 
solutions for zero boundary conditions. Hence, 

0∆,0∆,0∆,0∆ 2211 ==== υυ uu , (21)

yielding ),,,( 2211 SSSS uu υυ  =  ),,,( 2211 DDDD uu υυ . 

The identity of these solutions has purely theoretical meaning. The numerical 
solutions u1S , υ1S , u2S , υ2S  and u1D , υ1D , u2D , υ2D  are not identical in reality. The 
solutions u1S , υ1S , u2S , υ2S feature disturbances in the form of local 
concentrations at the constraining points, while the solutions u1D , υ1D , u2D , υ2D 
are free of them because the Dirichlet boundary value problem involves the 



NUMERICAL NON-EQUILIBRIUM AND SMOOTHING OF SOLUTIONS IN THE 

DIFFERENCE METHOD FOR PLANE 2-DIMENSIONAL ADHESIVE JOINTS 

125 

 
 

displacement functions for adherends, which, in the region Ω, fulfil the 
equations (1.a) – (1.d) exclusively, without any additional conditions. 
Thus, the numerical solutions u1D , υ1D , u2D , υ2D of the Dirichlet boundary value 
problem are the smooothed solutions of the problem with static and kinematic 
boundary conditions  
Hence, for the Dirichlet boundary value problem the region Ω is the set of 
definition of the equations (1.a) – (1.d). The finite difference equations are 
formulated for internal nodes of a finite difference mesh only, while for edge 
nodes values of displacements of adherends at an adhesive edge computed in 
the first boundary value problem are substituted. 

Effects of smoothing of concentrations in the solution shown in Figs. 6–11, 
using the solutions to the Dirichlet boundary value problem, are presented in 
Figs. 14–16.  
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Fig. 14. Smoothing of local concentrations in displacements u1, u2, υ1 and υ2 shown 
in Figs. 6b and 7b using solution to the Dirichlet boundary value problem. 500-times 

magnification with respect to Figs. 6a and 7a. Single precision computations  

Accuracy of a solution to the finite difference problem formulated in 
displacements can be assessed indirectly by a comparison to a solution 
considered as exact. One may assume, that the exact solution is given as the 
functions of shear stresses in adhesive τx and τy obtained from the boundary 
value problem expressed in stresses (13.a) – (13.b), (17.a) – (17.b).  
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Fig. 15. Smoothing of local concentrations in stresses σkx , σky , τkxy  shown in Figs. 8b – 
10b using solution to the Dirichlet boundary value problem. 100-times magnification 

with respect to Figs. 8a – 10a. Single precision computations  
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Fig. 16. Smoothing of local concentrations in stresses τx and τy shown in Fig. 11b using 
solution to the Dirichlet boundary value problem. 100-times magnification with respect 

to Fig. 11a. Single precision computations  
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Such an assumption is justified because stress formulations do not involve any 
kinematic boundary conditions and the phenomenon of numerical non-
equilibrium does not occur. 
Besides, there are two times fewer difference equations than in the 
displacement formulation. Thus, solutions for a stress problem features a 
smaller numerical error.  
Values of the shear stresses τx and τy in adhesive (in the considered case σN = 0) 
of the analyzed steel-steel joint loaded axially at arbitrary nodes of the finite 
difference mesh can be calculated from the formulae (10.a) – (10.b) basing on 
the solutions to the Dirichlet boundary value problem (a smoothed solution to 
the problem in displacements) and to the problem formulated in stresses. Some 
results obtained with single precision computations are given in Tables 1 and 2. 

Table 1. Values of shear stresses in adhesive [N/cm2] at Fig. 11a from solution to the 
Dirichlet boundary value problem, single precision. 

i\j  1 26 51 

1 
τx 8.486827E-1 5.917435E-4 8.493129E-1 

τy 1.992273E-1 – 1.872102E-4 – 1.993071E-1 

21 
τx 7.843243E-1 5.662714E-4 7.855886E-1 

τy – 2.296725E-5 – 1.467888E-6 – 2.127704E-5 

41 
τx 8.486575E-1 5.865992E-4 8.492196E-1 

τy – 1.992173E-1 1.629896E-4 1.993295E-1 

Table 2. Values of shear stresses in adhesive [N/cm2] at Fig. 11a, single precision. 

i\j  1 26 51 

1 
τx 8.489776E-1 5.909367E-4 8.489777E-1 

τy 1.992904E-1 2.414237E-10 – 1.992906E-1 

21 
τx 7.850467E-1 5.655336E-4 7.850462E-1 

τy – 8.30481E-8 8.998684E-10 1.059868E-7 

41 
τx 8.489764E-1 5.909268E-4 8.489764E-1 

τy – 1.992903E-1 – 1.293227E-10 1.992905E-1 

Errors of the solution to the Dirichlet boundary value problem given in Table 1 
with respect to the solution of the problem in stresses given in Table 2 treated 
as the exact solution are presented in Table 3.  

Table 3. Errors in % of solution to the Dirichlet boundary value problem from Table 1 
with respect to the solution of the problem in stresses in Table 2, single precision 

i\j  1 26 51 

1 
τx – 0.0347 0.1365 0.0395 

τy – 0.0317 − – 0.0828 
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21 
τx – 0.0920 0.1305 0.0691 

τy − − − 

41 
τx – 0.0376 – 0.7323 0.0286 

τy 0.0366 − 0.0196 

Zero values in Table 3 (as well as Table 6) were denoted by “–“. 

Smoothing eliminates disturbances in solutions in the form of local 
concentrations at internal nodes of the finite difference mesh only. It does not 
help to eliminate a solution asymmetry, characteristic for single precision 
computations. That asymmetry has a global character influencing the entire 
adhesive surface including displacement values adopted for the Dirichlet 
boundary value problem. Thus, after smoothing of local concentrations, 
asymmetry remains, what is evident for displacements in Fig. 14 and for 
stresses in Tables 1 and 3. 
A solution to the Dirichlet boundary value problem obtained using extended 
precision features symmetry of the stress τx and antisymmetry of the stress τy in 
adhesive with 13 or 14 digit accuracy (Table 4), while for the problem in 
stresses – with 15 digits accuracy (Table 5). Equivalence of the solutions (u1S , 
υ1S , u2S , υ2S) = (u1D , υ1D , u2D , υ2D)  in the case of extended precision is fulfilled 
with 8 or 9 digits accuracy (Tables 4 and 5). Errors (in %) of the solutions to the 
Dirichlet boundary value problem from Table 4 with respect to the solution of 
the stress problem given in Table 5, are presented in Table 6.  

Table 4. Values of shear stresses in adhesive [N/cm2] at Fig. 11a from solution to the 
Dirichlet boundary value problem in displacements, extended precision  

i\j  1 26 51 

1 
τx 8.4897784910685E-1 5.9094202580289E-4 8.4897784910685E-1 

τy 1.9929163997762E-1 0 – 1.9929163997763E-1 

21 
τx 7.8504803534036E-1 5.6553379686515E-4 7.8504803534036E-1 

τy – 3.988088577E-18 – 3.5925806786625E-19 1.7690792911054E-17 

41 
τx 8.4897784910685E-1 5.9094202580288E-4 8.4897784910685E-1 

τy – 1.9929163997762E-1 0 1.9929163997762E-1 

Table 5. Values of shear stresses in adhesive [N/cm2] at Fig. 11a. Solution to the 
problem in stresses, extended precision  

i\j  1 26 51 

1 
τx 8.48977849068113E-1 5.90942025558641E-4 8.48977849068113E-1 

τy 1.99291639968777E-1 – 6.61275438283593E-23 – 1.99291639968777E-1 

21 
τx 7.85048035298519E-1 5.65533796605446E-4 7.85048035298519E-1 

τy 2.65825758479839E-19 2.56760694084481E-23 – 2.02273481244121E-19 

41 τx 8.48977849068113E-1 5.90942025558641E-4 8.48977849068113E-1 
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τy – 1.99291639968777E-1 – 7.51033902896203E-22 1.99291639968777E-1 

Table 6. Errors in % of the stresses obtained from the Dirichlet boundary value problem 
in Table 4 with respect to the solution of the problem in stresses in Table 5, extended 
precision 

i\j  1 26 51 

1 
τx 0.456·10−8 0.414·10−7 0.456·10−8 

τy 0.444·10−8 − 0.444·10−8 

21 
τx 0.533·10−8 0.459·10−7 0.533·10−8 

τy − − − 

41 
τx 0.456·10−8 0.414·10−7 0.456·10−8 

τy 0.444·10−8 − 0.444·10−8 

Values in Tables 3 and 6 indicate, that errors in stresses yielding from the 
solution to the Dirichlet boundary value problem obtained with extended 
precision are about 107-times smaller than for single precision. 
Assessment of accuracy of numerical results is subjective and depends on the 
goal of computations. For instance, in the scale of Figs. 6a − 11a the smoothed 
solutions, both in single and extended precision, can be considered as 
satisfactory. If there is a need for more precise analyses, smoothed solutions 
obtained from extended precision are numerically correct. 

8. CONCLUSIONS 

This paper addressed a question of numerical errors occurring in the finite 
difference method applied to solve equations of the theory of elasticity 
describing a two-dimensional adhesive joint in a plane stress state. The 
formulation was expressed in displacements by means of a set of four partial 
differential equations of the second order with static and kinematic boundary 
conditions. Static boundary conditions involved loading applied to the joint, 
while the kinematic ones – constraining of adherends resulting in a 
geometrically stable system. 
Solutions to the problem expressed in displacements, yielding from the finite 
difference method, are sensitive to kinematic boundary conditions. It can be 
observed when adhesive joint is constrained in a statically determinate way and 
loading is self-equilibrated. Then reactions at constraints should be equal to 
zero but the finite difference solution does not meet this condition accurately. 
Thus, the solution is erroneous and the adhesive joint behaves as if it was not in 
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an equilibrium state. Here this phenomenon was called numerical non-
equilibrium. 
The numerical non-equilibrium results in a small asymmetry and local 
concentrations at constraining points of adhesive joints. The magnitude of local 
disturbances in the solutions depends strongly on precision of computations. 
Numerical examples presented in Section 5 illustrate this phenomenon 
sufficiently for the displacement formulation of the problem. The numerical 
non-equilibrium is observed in all the cases of adhesive joints constrained in a 
statically determinate way and the joints are under a self-equilibrated loadings.  
Disturbances in displacements and, consequently, in stress distributions 
resulting from constraining of an adhesive joint can be decreased or eliminated 
by a correction of loading. This correction can take many forms but every type 
of such a correction will violate the equilibrium of the original system. Such an 
approach requires numerous computations and does not lead to a unique 
solution. Smoothing of solutions is a more appropriate method.  
The method of solution smoothing proposed in this paper is based on an 
observation, that the influence of local disturbances in displacements is limited 
to small zones on an adhesive surface around constraining points. Thus, if a 
constraining point is sufficiently remote from the adhesive edges, then a local 
disturbance in displacements has a negligible effect on displacements values at 
points located at the adhesive edges. 
The smoothing method involves two subsequent solutions to two different 
boundary value problems for the same adhesive joint. In the first problem 
displacements fulfilling static and kinematic boundary conditions are found. As 
a result displacements functions for adherends are found and they are defined 
on the entire adhesive surface including the displacements at adhesive edges. If 
constraining points are sufficiently remote from the adhesive edges, then the 
functions of displacements for edge points are free of errors resulting from the 
numerical non-equilibrium, as was confirmed by a solution of the problem 
expressed in stresses, which is independent of kinematic boundary conditions. 
The displacement functions as given continuous functions on the edges of the 
definition set of the differential equations can be adopted as boundary functions 
for the second boundary value problem, i.e. the Dirichlet one. Such an approach 
proved to be very efficient numerically, what results from the stability of the 
finite difference method for elliptic differential equations.  
The difficulties with numerical non-equilibrium and solutions smoothing do not 
occur, if an adhesive joint is supported in a statically indeterminate way or 



NUMERICAL NON-EQUILIBRIUM AND SMOOTHING OF SOLUTIONS IN THE 

DIFFERENCE METHOD FOR PLANE 2-DIMENSIONAL ADHESIVE JOINTS 

131 

 
 

loading is not self-equilibrated. Then reactions at the supports are non-zero, not 
due to any numerical error, but due to equilibrium conditions and kinematic 
equivalence of the adhesive joint as an externally statically indeterminate 
system. Those solutions are subjected to numerical errors but their magnitudes 
are negligible, especially in the case of extended precision computations. 
The phenomenon of numerical non-equilibrium and the proposed method of 
solutions smoothing, presented in an example of a mathematical model of two-
dimensional adhesive joints, can be used in many other problems involving 
numerical solutions to boundary value problems with differential equations. 
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NIERÓWNOWAGA NUMERYCZNA I WYGŁADZANIE ROZWIAZAŃ  
W METODZIE RÓŻNICOWEJ DLA DWUWYMIAROWYCH POŁĄCZEŃ 

KLEJOWYCH 

S t r e s z c z e n i e  

Przedmiotem pracy są błędy numeryczne metody różnicowej zastosowanej do 
rozwiązania równań teorii sprężystości opisujących dwuwymiarowe połączenia klejowe 
w płaskim stanie naprężenia. Połączenia klejowe opisane są w przemieszczeniach za 
pomocą układu czterech eliptycznych równań różniczkowych cząstkowych rzędu 
drugiego z warunkami brzegowymi statycznymi i kinematycznymi. Jeśli połączenie 
klejowe jest unieruchomione w sposób statycznie wyznaczalny i jest obciążone 
zrównoważonym układem obciążeń, to rozwiązania różnicowe są wrażliwe na 
kinematyczne warunki brzegowe. W punktach unieruchomienia takiego połączenia 
przemieszczenia nie są dokładnie równe zeru. Rozwiązanie różnicowe jest obarczone 
błędem numerycznym, w wyniku którego połączenie klejowe zachowuje się tak, jakby 
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nie było w równowadze. Zjawisko to w tej pracy określa się terminem nierównowaga 
numeryczna. Zaburzenia rozkładów przemieszczeń i naprężeń można zmniejszyć lub 
usunąć za pomocą korekty obciążeń działających na połączenie klejowe lub przez 
wygładzenie rozwiazań bazujące na zadaniu brzegowym Dirichleta 

Słowa kluczowe: połączenie klejowe, liniowa teoria sprężystości, metoda różnic 
skończonych, błąd numeryczny, wygładzanie rozwiązań, zadanie 
brzegowe Dirichleta 
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